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PixARMesh: Autoregressive Mesh-Native Single-View Scene Reconstruction

Abstract

We introduce PixARMesh, a method to autoregressively
reconstruct complete 3D indoor scene meshes directly from
a single RGB image. Unlike prior methods that rely on im-
plicit signed distance fields and post-hoc layout optimiza-
tion, PixARMesh jointly predicts object layout and geome-
try within a unified model, producing coherent and artist-
ready meshes in a single forward pass. Building on re-
cent advances in mesh generative modeling, we enrich a
point-cloud encoder with pixel-aligned image features and
global scene context via cross-attention, enabling accurate
spatial reasoning from a single image. Scenes are gener-
ated autoregressively from a unified token stream of con-
text, pose, and mesh tokens, yielding compact meshes with
high-fidelity geometry. Experiments on synthetic and real-
world datasets show that PixARMesh achieves state-of-
the-art reconstruction quality while producing lightweight,
high-quality meshes ready for downstream applications.

1. Introduction

Reconstructing a complete 3D scene from a single RGB im-
age is a long-standing and fundamentally ill-posed problem.
A single viewpoint provides only partial, depth-ambiguous
observations of objects, while large portions of the scene re-
main occluded or unobserved. Recovering accurate object
shapes and coherent spatial layouts therefore requires strong
priors about indoor scenes and plausible object structures.
Earlier methods [7, 8, 41] reconstruct the entire scene
holistically by back-projecting image features into 3D vol-
umes and predicting a scene-level signed distance field
(SDF) using an encoder—decoder architecture. While these
approaches bypass explicit layout estimation, they are fun-
damentally constrained by the spatial resolution of volumet-
ric grids and the limited expressiveness of feed-forward de-
coders. As a result, they struggle to produce high-quality
geometry and lack the generative flexibility and generaliza-
tion capability needed for complex real-world scenes.
Recently, the compositional generation paradigm has
gained significant attention, driven by advances in large-
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Figure 1. Comparison of PixARMesh with recent compositional
scene reconstruction methods. PixARMesh predicts object poses
and reconstructs native meshes in a single autoregressive decoding
process, without relying on SDF-based surface extraction or layout
optimization, producing compact and artist-ready mesh outputs.

scale object-level reconstruction models [16, 18, 24-26,
40]. Since these models are typically pre-trained on clean,
unoccluded object images, existing pipelines [11, 45] re-
quire an inpainting or amodal completion stage to recover
occluded regions before passing object crops to the recon-
struction network. To assemble the reconstructed instances
into a coherent scene, they further rely on optimization-
based layout estimation, often formulated as point-cloud
matching, which is prone to local minima. Recent works
such as DepR [43] mitigate the need for inpainting by con-
ditioning generation directly on partial observations, while
MIDI [17] eliminates layout optimization by predicting
each instance directly in normalized scene coordinates. Al-
though these methods generally achieve higher reconstruc-
tion fidelity, their dependence on SDF-based representa-
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tions introduces additional complexity in surface extraction
and often yields overly smooth, high-face-count meshes
that deviate from artist-ready geometry.

Meanwhile, there is steady progress in object-level mesh
generative models [3-5, 20, 34, 36, 39, 42], where artist-like
mesh sequences are directly predicted by an autoregressive
Transformer decoder, eliminating the need for iso-surface
extraction. However, despite these advances, autoregressive
mesh generators remain limited to object-level outputs, and
no existing scene reconstruction pipeline leverages their na-
tive, artist-ready mesh representations. This gap motivates
integrating strong partial observations with mesh-level gen-
erative priors for scene-level reconstruction.

To bridge this gap, We propose PixARMesh, a frame-
work built on top of pre-trained object-level autoregres-
sive mesh generative models such as EdgeRunner [36] and
BPT [39], introducing a new paradigm for single-view
scene reconstruction using native, artist-ready mesh repre-
sentations. To leverage the limited geometric cues avail-
able in depth-back-projected point clouds, we fuse pixel-
aligned image features into the point-cloud encoder, inject-
ing appearance cues on top of partial geometry. To further
enhance scene-level understanding, we incorporate cross-
attention between each object’s point-cloud features and
a global scene point cloud, enabling context-aware recon-
struction under heavy occlusion. Finally, we utilize the
coordinate vocabulary of existing mesh generative mod-
els to tokenize scene composition, allowing PixARMesh
to jointly predict object poses and meshes within a sin-
gle feed-forward autoregressive sequence. We validate
PixARMesh on synthetic 3D-FRONT [12] and real-world
images, demonstrating that it produces high-quality, artist-
ready meshes with coherent layouts and strong reconstruc-
tion performance.

Our main contributions are summarized as follows:

e We present the first framework that does single-view
scene reconstruction directly, autoregressively in mesh
space, avoiding SDF-based decoding and surface extrac-
tion while producing high-quality, artist-ready outputs.

* We repurpose recent object-level mesh generative mod-
els by incorporating pixel-aligned image features and
global scene context into the point-cloud encoder, en-
abling context-aware pose and geometry generation from
a single image.

* We jointly predict object poses and meshes in a sin-
gle feed-forward autoregressive manner, achieving co-
herent scene composition without post-hoc layout op-
timization.  Extensive experiments demonstrate that
PixARMesh achieves state-of-the-art reconstruction per-
formance.

2. Related Work

3D Scene Reconstruction from a Single Image. Single-
view reconstruction is inherently ill-posed due to scale am-
biguity, occlusions, and incomplete geometric cues, often
requiring depth or shape priors from large-scale pre-trained
models. Early holistic approaches such as Panoptic3D [27],
PanoRe [8], Uni-3D [41], and BUOL [7] reconstruct an
entire scene using feed-forward encoder—decoder architec-
tures applied to back-projected feature volumes. While
these methods do not require explicit layout estimation,
they are constrained by limited spatial resolution and ex-
hibit poor generalization and generative capability.

Recent research has shifted toward compositional gen-
eration frameworks, which decompose a scene into indi-
vidual instances and benefit from advances in object-level
generative models. For example, Gen3DSR [11] and Deep-
PriorAssembly [45] perform image inpainting to complete
occluded regions before feeding the recovered object crops
into pre-trained object reconstruction models [18, 26, 40].
DepR [43] instead generates shapes conditioned on partial
image observations using a depth-guided diffusion model.
These methods rely on post-hoc, optimization-based layout
estimation to compose reconstructed instances back into a
scene, which can be susceptible to local minima and spa-
tial misalignment. MIDI [17] alleviates this limitation by
generating all instances within a normalized scene space,
thereby avoiding explicit pose estimation. Despite these
advances, most existing approaches operate on signed dis-
tance fields (SDFs) and require iso-surface extraction via
marching cubes [28], often producing densely tessellated
and overly smooth meshes that hinder geometry-based ap-
plications such as editing. Our work addresses these limita-
tions by predicting object layouts in a feed-forward manner
and reconstructing each instance as an artist-like mesh se-
quence.

Native Mesh Generation. Generating 3D shapes directly
in native, artist-like meshes has long been attractive for
their compactness, editability, and compatibility with down-
stream graphics applications. Early methods rely on struc-
tured primitives such as surface patches [14], deformable
ellipsoids [37], mesh graphs [9], and binary space parti-
tioning [6], but they typically impose strong geometric pri-
ors and offer limited topological flexibility. More recently,
PolyDiff [1] applies discrete diffusion to synthesize meshes,
while PolyGen [29] introduces an autoregressive frame-
work that predicts vertices and faces using two coordinated
Transformer decoders.

Subsequent approaches move to a single-sequence for-
mulation. MeshGPT [34] employs a Transformer over VQ-
VAE—quantized mesh tokens, and MeshAnything [4] ex-
tends it with shape-conditional generation. MeshXL [3] fur-
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Figure 2. Pipeline overview. Given an RGB image, we use pretrained models to extract the point cloud and image features for both the
target object ¢ and the global scene. These local and global cues are fed into the Pixel-Aligned PC-Encoder to produce the fused latent
code, which is then aggregated into a single latent vector via cross-attention. This latent vector conditions the Autoregressive Decoder,

which predicts the object’s pose followed by its mesh token sequence.

ther simplifies the process by operating directly in quantized
coordinate space, removing the need for a VQ-VAE but at
the cost of longer token sequences. To improve scalability,
recent studies propose compressive tokenization strategies
that exploit face adjacency [5, 21, 36, 39]. Meshtron [15]
follows MeshXL tokenization but introduces an Hourglass
Transformer [30] to internally compress long sequences.

Others explore complementary directions for improving
mesh generation quality and controllability. DeepMesh [44]
and Mesh-RFT [23] incorporate reinforcement learning to
align mesh generation with aesthetic or human preferences.
PivotMesh [38] generates pivot vertices as coarse struc-
tural guidance for subsequent mesh generation, while Ver-
texRegen [42] and ARMesh [20] advance the coarse-to-fine
generation paradigm by progressively increasing geomet-
ric detail. Building on mesh generative models with strong
compression and scalability, such as EdgeRunner [36] and
BPT [39], our work extends these advances to scene-level
reconstruction with artist-like meshes.

3. Method

We provide an overview of our framework in Fig. 2,
which consumes depth-derived point clouds from off-the-
shelf perception models and performs autoregressive scene
reconstruction. We first introduce the problem setup in
Sec. 3.1, then describe how we adapt point-cloud encoders
from object-level mesh generative models to operate at the

scene level. Finally, we detail our tokenization scheme in
Sec. 3.3 and our training strategy in Sec. 3.4.

3.1. Preliminary

The goal of single-view scene reconstruction is to recover
the 3D geometry and spatial configuration of a scene from a
single RGB image. Following the compositional paradigm
used in prior work such as DepR [43] and DeepPriorAssem-
bly [45], we focus on reconstructing only foreground ob-
ject instances (e.g. furniture in indoor scenes) and disregard
large planar background structures such as walls and floors.

We introduce PixARMesh, an end-to-end framework
that jointly predicts the shape and scene-level pose of each
object instance, producing a complete scene where all ob-
jects are represented using native, artist-ready meshes rather
than implicit SDFs.

Given an input RGB image I € RIXWX3  we first
extract depth D, instance segmentation masks M =
{M;}N |, and image features Fiy, using off-the-shelf mod-
els. The depth map is back-projected using the camera in-
trinsics K to obtain a raw scene point cloud Picepe. Ap-
plying the instance masks yields per-object point clouds
P = {P}N, where P, = Picene ©® M;, which capture
only the visible portions of each object in global camera
coordinates.

Unlike previous compositional methods that reconstruct
object shapes first and resolve their spatial layout afterward,
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we unify both tasks in a single autoregressive feed-forward
architecture. For each instance ¢, the model Far predicts
both its scene-level pose T; and its canonical-shape mesh
Oii

(,TMOZ) = FAR(PiaMivj:irngvP)scene) (1)

After processing all instances, the final scene reconstruc-
tion is obtained by transforming each canonical mesh into
the scene coordinate frame S = {T;0; } ;.

We adopt EdgeRunner [36] and BPT [39] as our base
models, both of which are autoregressive mesh generators
designed for object-level, shape-conditioned generation. In
their original formulations, a point-cloud encoder processes
complete object point clouds and produces conditioning to-
kens for the Transformer decoder to autoregressively gen-
erate mesh sequences. However, in single-view scene re-
construction, objects are only partially observed due to oc-
clusions, and their global poses within the scene must also
be inferred. In the following sections, we describe how we
repurpose them for the single-view setting by (1) adapting
the point-cloud encoder to incorporate appearance features
from an image encoder, (2) injecting global scene context to
compensate for missing geometry, and (3) predicting object
poses within the same autoregressive framework.

3.2. Repurposing the Point-Cloud Encoder

Injecting Pixel-Aligned Image Features. The original
point-cloud encoder used in EdgeRunner and BPT operates
solely on point coordinates, without leveraging the rich ap-
pearance cues present in image features. To support single-
view reconstruction, where objects are often partially ob-
served, we augment the encoder with direct multi-modal
fusion between geometry and pixel-aligned image features.

Given an instance point cloud P; and camera intrinsics
K, each 3D point p is projected onto the image plane to
obtain its corresponding pixel Proj(K,p) = (u,v) on the
global feature map Fi,g, establishing a point-pixel cor-
respondence. For each such pair, the encoder &, con-
catenates the geometric feature £ with the aligned im-
age feature f)™& = Fjng(u,v) to form the key-value in-
puts to a Transformer-based fusion block. A set of learnable
query embeddings then aggregates these fused features into
a compact latent code:

z; = Epc (£2°, £8) Vp € Pi. )

This pixel-aligned design enables the autoregressive mesh
generator to incorporate per-point appearance cues, enhanc-
ing robustness to occlusion and improving the completeness
and global consistency of the reconstructed geometry.

Scene Context Aggregation. Instead of normalizing each
instance independently in its own canonical space, which

discards global spatial relations, we first normalize the en-
tire global point cloud Picene and all instance point clouds
{P;}}| into a unified scene coordinate frame. This pre-
serves consistent spatial reference among all objects. The
normalized instance point clouds are then fed into the pixel-
aligned point cloud encoder, ensuring that all encoded fea-
tures share a coherent spatial frame for subsequent context
aggregation. From this encoder, we obtain a scene-level la-
tent Zscene and per-instance latent codes z;.

To incorporate global scene context, e.g., cues from
nearby objects of similar category or geometry, and to fur-
ther improve reconstruction quality, each object latent z;
attends to the scene-level latent via a cross-attention layer:

z:%8 = CrossAttn(q = zi, k = Zscenes ¥ = Zscene) s (3)
The resulting aggregated feature z_® enriches the instance
representation with holistic scene cues, enabling more ac-
curate pose estimation and geometry prediction for each ob-
ject.

3.3. Tokenization

As an autoregressive framework, our model represents both
object poses and meshes as discrete token sequences. We
uniformly quantize the canonical unit cube [—1,1]? into N
bins along each axis. For EdgeRunner, each vertex is repre-
sented by three integer tokens <x>, <y>, <z>, while BPT
replaces these with a <block_id> and <offset_id>
pair through block-wise decomposition of the N3 quantized
grid.

Object Pose Tokenization. Following standard conven-
tions in 3D detection [19], we represent each object pose
using a gravity-aligned 7-DoF bounding box (center, scale,
yaw). Rather than introducing a dedicated vocabulary for
pose parameters, especially for the yaw angle, we reuse the
vertex tokenization scheme by encoding the 8 corner points
of the bounding box (normalized with respect to the global
normalization in Sec. 3.2). This yields lightweight pose
sequences (24 tokens for EdgeRunner and 16 tokens for
BPT), negligible compared to mesh sequences. Importantly,
this vertex-based formulation enables complete vocabulary
sharing with mesh tokenization, avoiding new token types
while maintaining expressiveness.

At inference time, the pose sequence is first decoded into
the 8 bounding-box corners directly in the normalized scene
coordinate frame. The subsequent mesh sequence is de-
coded in the local canonical space, where each object is
normalized to a unit cube. To bridge these two spaces, we
recover a local-to-global transformation using the decoded
global-space corners as targets. Let Xjoca € R3*3 de-
note the canonical box corners and Xgjobal € R8%3 denote
the decoded global-space corners. We estimate the best-fit
affine transformation T € R3** by solving the linear least-
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squares problem:

T = arnginH Xglobal — [Xiocal 1] TTHZ' “)

The resulting transformation T™* is interpreted as a gravity-
aligned transform, and is applied to all vertices of the de-
coded canonical mesh, yielding the final object geometry in
the global scene frame.

Object Mesh Tokenization. For mesh sequences, we
simply adopt the native tokenization strategy of each base
model.

BPT uses a Blocked and Patchified Tokenization scheme
that partitions the 3D coordinate grid into blocks and aggre-
gates spatially adjacent faces into compact patches. This
achieves strong compression (ratio ~ (.26 at resolution
128) with a large but structured vocabulary of 40,960 to-
kens.

EdgeRunner employs a Compact Mesh Tokenization de-
rived from the EdgeBreaker algorithm [33], traversing tri-
angles via a half-edge structure to maximize vertex reuse.
It attains a moderate compression ratio (= 0.46 at resolu-
tion 512) with a smaller vocabulary of 518 tokens, while
preserving high geometric fidelity.

These two tokenization paradigms are complementary:
BPT prioritizes aggressive sequence compression with a
high-capacity vocabulary, whereas EdgeRunner emphasizes
resolution and geometric detail with a more compact vocab-
ulary and moderate compression. In all cases, meshes are
normalized to a unit cube and vertex coordinates are dis-
cretized according to the respective quantization resolution.
Our framework supports both without modification, demon-
strating robustness to widely different tokenization designs.

Final Token Sequence. For each object, the final autore-
gressive sequence is constructed as:

<bos>, [pose_seq], <sep>, [mesh_seq], <eos>

where [pose_seq] and [mesh_seq] denote the tok-
enized pose and mesh sequences, respectively.

3.4. Training

Our autoregressive decoder is trained using a single next-
token prediction objective. Given a token sequence S =

(s1,...,sr)and the aggregated latent z,,, the training loss
is
T
Lee ==Y logpo(si | 5<t, Zage) , ©)

t=1

where the model predicts each token conditioned on all pre-
ceding tokens and the fused point-cloud latent enriched with
pixel-aligned image features and global scene context.

As illustrated in Fig. 2, the model autoregressively gen-
erates both the pose tokens and the mesh tokens within a
single unified sequence. This joint formulation allows the
decoder to learn instance geometry and global layout esti-
mation simultaneously, enabling pose reasoning to benefit
from geometry cues and vice versa.

4. Experiments
4.1. Settings

Datasets. We conduct experiments on both synthetic and
real-world datasets. For training, we use the synthetic in-
door dataset 3D-FRONT [12], adopting the preprocessed
version provided by InstPIFu [22]. Since the raw 3D-
FRONT meshes are extremely high-poly, we apply planar
mesh decimation to all object assets to obtain lightweight,
artist-compatible meshes suitable for autoregressive gener-
ation. Additional preprocessing details are provided in the
supplementary material. 3D-FRONT contains over 16K ob-
ject meshes sourced from 3D-FUTURE [13], along with
scene layouts, RGB images, depth maps, and instance seg-
mentation masks.

Following the standard protocol, our training split con-
sists of 22,673 scene images. For evaluation on synthetic
data, we use the test subset curated in DepR [43], which in-
cludes 100 scenes for object-level evaluation and 156 scenes
for scene-level evaluation.

To assess generalization to real-world imagery, we ad-
ditionally evaluate our trained model on real images from
Pix3D [35].

Implementation Details. For 2D visual priors, we follow
DepR [43] and employ off-the-shelf models: Grounded-
SAM [32] for instance segmentation, DepthPro [2] for
monocular depth estimation, and DINOv2 with register to-
kens [10, 31] as our image feature encoder.

For back-projected point clouds, we adopt the native
sampling densities of each mesh generative base model:
BPT-based models use 4,096 points per object, whereas
EdgeRunner-based models use 8,192 points. For the global
scene representation, we uniformly sample 16,384 points.

All point clouds (partial object-level and full scene-level)
and object poses are normalized to a unit cube. We apply
random augmentation during training, including a vertical-
axis rotation in the range [—45°,45°], scaling in [0.75, 1],
and a translation shift in [0, 0.2]. We additionally jitter depth
values by up to 0.02 to account for inaccuracies in monoc-
ular depth estimation. Object meshes are normalized to a
unit cube in their respective canonical space.

We train all models on 8§ NVIDIA A100 GPUs using
AdamW with a learning rate of 1 x 10, 500 warm-up iter-
ations, and cosine decay. The BPT-based variant converges
in roughly 10 hours, while the EdgeRunner-based variant
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Method :
CD (x1073,]) CD-S(x1073,]) F-Score (%,1) CD (x1073,]) F-Score (%, 1)
SDF-based
InstPIFu [22] 2134 124.9 13.72 44.74 29.63
Uni-3D [41] 218.3 113.3 12.99 — —
Gen3DSR [11] 2224 137.5 13.52 9.74 31.42
DeepPriorAssembly [45] 191.8 76.2 16.72 20.13 27.83
MIDI [17] 213.2 155.6 16.02 11.31 64.15
DepR [43] 153.2 56.4 25.00 2.57 89.66
Mesh-based
PixARMesh-EdgeRunner (Ours) 107.95 53.33 28.79 5.46 76.91
PixARMesh-BPT (Ours) 100.81 49.68 27.54 5.27 76.63

Table 1. Qualitative comparison with state-of-the-art methods on the 3D-FRONT [12] dataset. Following DepR [43] and DeepPriorAssem-
bly [45], we report object- and scene-level Chamfer Distance (CD; lower is better) and F-Score (higher is better). We additionally include
the single-direction Chamfer Distance (CD-S) to account for missing instances.

requires around 30 hours due to its substantially longer to-
ken sequence length.

Evaluation Metrics. We evaluate our method using
Chamfer Distance (CD) and F-Score, following standard
practice in single-view reconstruction [22, 43, 45]. Un-
less otherwise noted, we use an F-Score threshold of 0.002.
Each reconstructed mesh is uniformly sampled into 10k
points prior to metric computation.

At the object level, we normalize predicted and ground-
truth meshes to a unit cube and compute CD and F-Score to
measure the geometric fidelity of individual objects.

At the scene level, we first assemble all predicted in-
stances using their estimated poses. The composed scene,
formed by placing each generated mesh into its predicted
bounding box, remains in the normalized scene space de-
scribed in Sec. 3.2. For fair comparison, we apply a global
scale and translation to align the predicted scene with the
ground-truth scene, which preserves its original metric scale
and coordinate frame. Following DeepPriorAssembly [45],
we additionally report the single-direction Chamfer Dis-
tance (CD-S), which emphasizes reconstruction complete-
ness while ignoring empty background regions.

4.2. Main Results

Quantitative Results. Tab. | reports quantitative compar-
isons on the synthetic 3D-FRONT [12] dataset. We bench-
mark PixARMesh against representative single-view scene
reconstruction approaches, including diffusion-based meth-
ods such as DepR [43] and MIDI [17], feed-forward re-
construction frameworks such as InstPIFu [22], and holis-
tic scene methods such as Uni-3D [41]. Because holistic
models do not explicitly generate individual object meshes,
object-level metrics are not applicable.

Our method achieves highly competitive performance
at both the object and scene levels. At the object level,
PixARMesh achieves the second-best performance among
all approaches, with F-Score comparable to diffusion-based
SDF models. Unlike SDF-based pipelines that require
Marching Cubes to extract dense iso-surfaces, our approach
directly produces compact, artist-ready meshes with only
a few thousand faces per instance while maintaining com-
parable geometric precision. (Further statistics on face
counts are provided in the supplementary material.) At
the scene level, our method achieves state-of-the-art perfor-
mance across all reported metrics. We attribute this to our
unified autoregressive framework that jointly predicts ob-
ject geometry and pose, leveraging our pixel-aligned point
cloud encoder and scene-level context aggregation for co-
herent full-scene reconstruction. We also observe that the
EdgeRunner-based variant delivers stronger reconstruction
performance than the BPT-based variant.

Qualitative Results. We present qualitative comparisons
on the synthetic 3D-FRONT [12] dataset in Fig. 3 and on
real-world images from Pix3D [35] in Fig. 4.

Across both synthetic and real settings, PixARMesh pro-
duces geometrically coherent scene reconstructions, cap-
turing object shapes and spatial arrangements that gener-
ally correspond to the input images. Owing to the na-
tive artist-created mesh representation, PixARMesh yields
meshes with clear edges and well-defined structural bound-
aries while maintaining smooth surface continuity, leading
to cleaner shapes compared to prior approaches.

On real-world images, PixARMesh shows reasonable
generalization and can reconstruct indoor environments
with practical and interpretable geometry, despite being
trained primarily on synthetic data.
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Ground Truth

PixARMesh (Ours)

Figure 3. Qualitative comparisons on the 3D-FRONT [12] dataset. For PixARMesh, we also show the mesh wireframe to highlight

geometric quality.

PixARMesh (Ours)

DepR

Figure 4. Qualitative results on real images from the Pix3D [35] dataset.
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4.3. Ablation Studies

We conduct ablation experiments on the 3D-FRONT [12]
dataset to analyze the effectiveness of key components in
PixARMesh. Our study focuses on two aspects: (1) pipeline
design - the contribution of each proposed component, and
(2) error analysis — the impact of upstream perception er-
rors on overall scene reconstruction.

Scene-level Object-level

our full EdgeRunner-based model equipped with pixel-
aligned features and scene-level context aggregation. As
shown in Tab. 3, object reconstruction quality improves
when ground-truth depth is provided. Moreover, supply-
ing the ground-truth layout leads to further performance
gains, indicating that accurate pose and scale estimation of-
fers essential guidance for generating high-quality mesh se-
quences.

Method CD CD-S  F-Score CD F-Score GT Inputs CD CD-S F-Score
(x1073, 1) (x107%, 1) (%, 1) (x1073,1) (%, 1) Depth  Segm  Layout  (x107% 1)  (x107% 1)  (%,1)
Baseline 61.07 21.42 40.20 5.04 77.54 107.95 53.33 28.79
w/o Pixel-Aligned Feat. ~ 61.00 24.78 4147 5.11 77.39 v 105.58 55.36 31.71
w/o Ctx. Aggregation 45.03 15.35 42.02 5.02 78.31 v 54.51 21.73 37.50
Full model 43.12 15.64 43.48 4.85 79.41 v v 21.58 6.52 49.84
v v 43.12 15.64 43.48
v v v 21.19 6.18 50.65

Table 2. Ablation studies on our point-cloud encoder design. The
baseline encoder receives only the partial object point cloud nor-
malized in the global scene coordinate frame.

Point-cloud Encoder Design. To validate our repurposed
point-cloud encoder, we evaluate the performance degrada-
tion when removing each module individuall, as shown in
Tab. 2. We report results using the EdgeRunner-based vari-
ant with ground-truth depth and masks; additional results
for the BPT-based model are provided in the supplementary.

Removing the pixel-aligned image features causes the
largest performance drop, particularly in scene-level Cham-
fer Distance. Using scene context aggregation alone, with-
out image features, yields only marginal improvement over
the baseline and slightly worsens object-level performance.
However, when global context aggregation is combined
with pixel-aligned image features, the model achieves con-
sistent improvements across both object- and scene-level
metrics. This highlights the importance of image appear-
ance cues when incorporating scene context: under heavy
occlusions, geometry-only conditioning becomes ambigu-
ous and can mislead the model without complementary vi-
sual features.

CD F-Score
GT Depth GT Layout (x1073, ] (%, 1)
6.67 73.06
v 5.66 76.32
v 5.46 76.91
v v 4.85 79.41

Table 3. Effects of depth and layout in object-level metrics.

Object-Level Error Analysis. Depth estimated from ex-
ternal models can introduce errors that propagate through-
out the reconstruction pipeline, while inaccurate layout es-
timation may misguide subsequent mesh generation. To
assess the full potential of our approach, we evaluate ab-
lations using ground-truth depth and ground-truth layout
in object-level reconstruction. For this analysis, we use

Table 4. Effects of upstream (depth, segmentation, and layout)
errors in scene-level metrics. Note that ground-truth layout implies
ground-truth segmentation.

Scene-Level Error Analysis. Our pipeline begins by con-
structing a raw point cloud using depth maps and segmen-
tation masks predicted by off-the-shelf models. To isolate
the impact of upstream perception errors, we report results
using ground-truth inputs in Tab. 4. As in the object-level
analysis, we use our full EdgeRunner-based model. Follow-
ing the evaluation protocol in DepR [43], providing ground-
truth layout implies using ground-truth segmentation.

The results show that ground-truth segmentation yields
the largest improvement in Chamfer Distance, followed by
layout and then depth. This sensitivity to segmentation
quality is primarily due to missing objects or corrupted
point clouds produced by inaccurate instance masks. In-
terestingly, we observe relatively strong robustness to depth
estimation errors, suggesting that the model can still cap-
ture sufficient global context even when the depth input is
imperfect.

5. Conclusion

We presented PixARMesh, an autoregressive framework
for single-view indoor scene reconstruction. By repurpos-
ing object-level mesh generative models with pixel-aligned
point-cloud encoding and scene-level context aggregation,
PixARMesh jointly predicts object pose and geometry, pro-
ducing coherent full-scene reconstructions without relying
on SDFs or post-hoc layout optimization. Our method
achieves competitive object-level accuracy and state-of-
the-art scene-level performance, while generating compact,
artist-ready meshes. Extensive experiments and ablations
highlight the effectiveness of our design and its applicabil-
ity to real-world inputs, demonstrating the promise of au-
toregressive mesh generation as a viable alternative to SDF-
based pipelines.
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